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IV. DiscussioNn

The rapidly converging moment solution recently used to de-
termine the equivalent circuit parameters for an inductive post
obstacle in a rectangular guide [1] has been extended to treat the
post surface induced currents. It was found that the multifilamen-
tary representation of the equivalent current can provide an
accurate knowledge of the actual induced current. The procedure
would presumably prove useful in resolving the induced current
for other waveguide obstacles such as thick irises and posts of
arbitrary shape that require, in general, more than just a few
Fourier terms for their current representation.

A point should be made concerning the choice of the number
of filaments N. The results presented in Section III exhibit a
remarkable agreement with the exact solution with a number of
sources as small as 10 per one-wavelength circumference. Note
that, for any engineering needs, even a smaller number of sources
could suffice.

The question of appropriately choosing the circular surface S,
has been dealt with, though indirectly, in the preceding section.
The studies have shown that, with a fixed number of equivalent
sources, the agreement with the exact solution is excellent within
the range 0.1 < R, /R, < 0.6, where the value of the parameter
R, /R, is virtually of no importance. However, the results do
deteriorate when the equivalent sources surface S, approaches the
post surface. This behavior has been already observed in connec-
tion with a numerical solution of two-dimensional electromag-
netic wave diffraction [5]. Note that this is in contrast to the
equivalent network parameters that are virtually independent of
the choice of S, [1]. This cardinal difference is attributable to the
stationary character of the formula for the elements of this
two-port network, which renders their calculation insensitive to
small variations of the current about the true current.
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Modes in Anisotropic Rectangular Waveguides: An
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Abstract —We present a simple and accurate perturbation method for
obtaining the propagation characteristics of anisotropic rectangular wave-
guides described by a diagonal dielectric constant tensor. Comparison with
the results of finite-element technigue shows an excellent agreement.
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Fig. 1. (a) An embedded anisotropic channel waveguide with diagonal dielec-
tric permittivity tensor. (b) The unperturbed structure used as a basis for
obtaining the propagation characteristics of the waveguide shown in (a).

I. INTRODUCTION

The basic structural element common to many of the in-
tegrated optic devices is a single-mode channel waveguide. For an
efficient design of devices, such as directional couplers, filters,
and modulators, that are generally fabricated on an anisotropic
substrate like LiNbQO, [1], it is important to study the modal
properties of anisotropic channel waveguides—the simplest of
these consists of a homogeneous rectangular core. Achieving
exact analytical solutions of such waveguides presents consider-
able difficulty, even for the isotropic case, due to the presence of
corners. Numerical methods like the finite-element technique
have been used for studying such problems [2]-[4]; however,
these involve extensive and time-consuming computer calcula-
tions. Some approximate analytical techniques have also been
presented [5], [6]; the effective index method [6] which can also
be used for homogeneous core waveguides, has been shown to
sometimes give ambiguous results [7]. The technique presented in
[5] involves solving coupled transcendental equations, and also
neglects the effect of corners, which, as we will show, becomes
important near cutoff and for near-square cross section core
waveguides.

In this paper, we present a simple and accurate method to
obtain the propagation constants and the modal fields in homo-
geneous anisotropic channel waveguides described by a diagonal
dielectric constant tensor. The results are compared with the
finite-element method, and it is shown that our method gives
highly accurate results, particularly for the fundamental modes.

II. MEeTHOD

We consider a homogeneous anisotropic channel waveguide
with each region characterized by a diagonal dielectric constant
tensor. The principal dielectric constants of the core are denoted
by ni.,ni,, ni,, and the substrate by n3,, n3,,n3, (see Fig. 1).
In each region, the electric field satisfies the following equation:

v(V-E)-VE=k,kE @

where k, is the free-space wavenumber and k represents the
dielectric constant tensor.

The modes in channel waveguides can be classified into EJ,
(polarized predominantly along the y-direction) and Ej,
(polarized predominantly along the x-direction) modes [4], [6],
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[8]. For E;, modes, since E, is very small, the y-component of
(1) can be approximated by

3E, n PE

y 2 =
ax2 ;E ayl +(k‘% i_ﬁ)')E.V_O (2)
where we have used
JE JE
D= 277 2 7
V-D=¢,n; 3y ten; 0 3)
and a z-dependence of the field to be of the form exp(—if,z) is

assumed, B, representing the propagation constant of the EJ,
mode.

Similarly, for the EJ, modes, E, satisfies the following equa-
tion:

82E n 2E

k2 2
Bx (

BI)E, =0 ©

Z

where B, is the propagation constant of the Ej, mode. Solving
(2) and (4) with proper boundary conditions becomes very tedi-
ous, and therefore we seek an approximate solution that is
sufficiently accurate. We observe that, for most practical wave-
guide structures, the ratio n, /n, (or n,/n;) is almost constant
in all regions. This enables us to use the method of separation of
variables [7] to solve (2) and (4). Thus, we consider the actual
waveguide as a perturbed form of the waveguide described by the
following index distribution:

n}(x,p)=n(x)+n*(y) &)
where
2
Iy a
2 2 !XI < 2
n(x)= R
2 nll a
iy, =5 lx! >3
2 2
(6)
ny,—ni /2  y>b/2
n*(y)={nl/2, yI<b/2
ny,—ni/2,  y<-b/2
and i=x,y corresponds to E oo Eng modes, respectively. The

above profile matches with the actual profile in every region
except in the corner (shaded) regions, where the two profiles
differ by an amount ni — n3, which is very small for most
practical waveguides, and can be taken into account using first-
order perturbation theory.

Using a procedure similar to that outlined in [7], we obtain

E =X(x)Y(y) (7
where
COS K, X
x(={Ames)  wi<r
Bexp(—ylx)) |x|>a/2
(8)
Dexp(—98,y) y>b/2
Y,(y)={ Cicosa,y + Cysina,y [yi<b/2
Eexp(n,y) y<=2b/2
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and
n2 12
K —al(sz —1312,)
v =y B2 — k2(n3, — nd,/2)] 2
8,=ay[ B2~ k2(nd, — nd /2)]'
n=ay[ B~ K3 (n3, — i /2)]
o, = az(kgn%,/2—,322,)1/2. (9

A, B, Cy, C,, D, and E are arbitrary constants, which finally
results in only one independent amplitude constant in the expres-

sion for the field
fori=x
fori=y|"

The separation constants 8, and B,, are determined as solutions
of transcendental equations obtained by applying proper
boundary conditions, and the propagation constant of the mode
is given by

ay=ny /Ny, a4, =1

_1 a; =1y, /nh

(10)

B?=Bi+ B3 (11)
For EJ, modes, the boundary conditions under the assumption
of polanzed modes reqmrc that E, and JE, /dx be continuous
at x=+a/2 and n? v OE, /8y be contmuous at y==15b/2,
which results in the following two transcendental equations:

k,a=2tan""(y,/k,)+(p-1)w (12)
2 2
ri,d, nym,
a,b=tan"! | =22 | +tan~? ——;m’ +(g-1)m,
n §yay n z},ay
r,q=123,---. (13)

Similarly, for the £;, modes, using the boundary condition of

continuity of E,, 3E /8y at y=+b/2 and n’E,, dE, _/dx at
x=xa/2, we obtam
1| M
kea=2tan"" | == |+ (p-D)7 (14)
L PLT"

)
axb=tan‘l(f-)-f—tan_l(%)-k(q—l)w. (15)
X X

Using the first-order perturbation theory to account for the
effect of corners [7], we obtain the corrected propagation con-
stant B/ as

BI’Z = 612 + Aﬁlz (16)

where

2k2t

) ak sz(x,-g)(nl, n3,)(sG, + s'H))
AR =

' sink,a
{[a+ : +Z£cosz(lc£)]
., %, 2

sine, b

(7

x[(1+F2)b+ ——(1- F?)+sG, +s’H}}
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and

F= (U,/“z)cos(“zb/z)_Sin(azb/2)
© (n,/;)sin(a;b/2)+cos (a;b/2)

[cos(a,b/2)+ F,sin(a,b/2)]
G- 5

H- [cos(a,b/2)~ F,sin(a,b/2)]*
' m

t=n3,/n3,,s=s"=1for Ey, modes (i =x)
t=1,s=n},/n%,,s’=ni,/n3, for EJ, modes (i=y). (18)

III. RESULTS AND DISCUSSIONS

In order to test the accuracy of the present analysis, we have
made calculations for a channel waveguide considered by Mabaya
et al. [3], who have used the finite-element method which is
expected to give highly accurate results. The channel waveguide is
characterized by (see [3, fig. 3])

nlx = 2.222, nly = nlz = 2.3129
Ry =220,n,,=n,,=2.29

ny;=10,a=5pm, b=1pm.

(19)

Fig, 2 shows the variation of 8/k, versus bk, for the E{;, Ef,
and E3; modes. Solid lines correspond to those of Mabaya et al.
[3], while crosses and dashed lines correspond to our calculations
[9]. We must mention here that the mode depicted as E,; in [3]
should have been designated as Ej;, since it seems to correspond
to the second symmetric mode along the x-direction. We have
confirmed this by comparing our results with those of Marcatili
[8] for Ey;, E,, and E;; modes in isotropic waveguides. As can
be seen from Fig. 2, the agreement between our results and those
of the finite-element method is very good. The accuracy of the
present method decreases for higher order modes due to in-
creased field penetration into the corner regions; again, for the
same reason, the results are expected to deviate by a small
amount from the exact ones near cutoff. However, the agreement
between the results of the present method and those of the
finite-element method appears to be very good, even near cutoff
for the fundamental mode. This can be attributed to the large
a/b ratio of the waveguide under consideration, because, for
large values of a/b, the waveguide effectively approaches the
slab configuration for which this kind of analysis becomes exact.
Further, the superstrate index (n5) is much smaller than the core
index, resulting in relatively stronger confinement even near
cutoff, which is determined by the substrate index (n,). For
example, for the waveguide described by (19), we have found that
the effect of the perturbation is almost negligible (less than 0.05
percent in 8/k, values). However, the effect of perturbation
becomes significant for immersed structures (n; = n,) and wave-
guides with smaller a /b ratios [7).

We have also compared the results obtained by our method
with those of {[5]. Fig. 3 shows the variation of normalized
propagation constant

/
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Fig. 2. Variation of 8/k, of EJ, modes with bk, for an anisotropic channel
waveguide described by (19). S‘giid lines correspond to the results of Mabaya
et al. using the finite-clement method. Crosses and dashed lines correspond
to the present analysis.
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Fig. 3. Variation of normalized propagation constant B with k, for Efj
mode for a wavegnide characterized by uniaxial substrate and channel with
n,=2.28, n,=2.17 in the substrate and n,=2.29, n, = 2.21 in the channel.
The upper set corresponds to optic axis along x-direction and the lower set
corresponds to optic axis along z-direction. Solid curves correspond to our
unperturbed results and that of [5], while dashed curves correspond to our
results with perturbation.

with k,. Although [5] considers the variation of #,/n, and
n,/n, in the various regions, the effect of corners is neglected.
We have found that the effect of the former is within 0.001
percent, while the latter has a maximum effect of 0.1 percent
(near cutoff) in 8/k, values (see Fig. 3). The former has much
less effect because of the almost equal values of n,/n, and
n,/n, in the substrate and channel regions, and due to the
negligible field in the cover where again the above ratio differs
only by about 3 percent. Therefore, it is more important to
consider the effect of corners and one may neglect the noncon-
stancy of the ratio n, /n, or n,/n, in the various regions. Thus,
the present method is more accurate and also involves only
simple (uncoupled) transcendental equations which can be solved
using a pocket calculator.

IV. CONCLUSION

We have presented an accurate and simple perturbation method
to obtain the propagation characteristics of anisotropic rectangu-
lar core waveguides described by a diagonal dielectric constant
tensor. The analysis should serve as a simple basis in the study of
anisotropic channel waveguides, directional couplers, etc., and, in
particular, may be applicable without modification to waveguides
fabricated in LiNbO; using proton-diffusion technique [10].
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The Interdigitated Three-Strip Coupler

S. M. PERLOW, SENIOR MEMBER, IEEE, AND A. PRESSER,
MEMBER, IEEE

Abstract — A general design procedure for three-strip interdigitated cou-
plers with arbitrary coupling values is presented. These results are then
applied, for various coupling values, to both stripline and microstrip media
to check the physical realizability. The dimensions of the coupler can be
substantially affected by allowing a small degree of impedance mismatch-

ing.
1. INTRODUCTION

Interdigitated three-line microstrip couplers have been de-
scribed in the literature [1], [2). Their dimensions were arrived at
in a form which required rather complicated mathematical
manipulations and optimization techniques. The approach taken
here is to develop the capacitance matrix for the generalized
three-line interdigitated coupler. Using this matrix, the parame-
ters required to provide any degree of coupling in any type of
media (inhomogeneous microstrip or homogeneous stripline) are
casily derived.
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Fig. 1.

Unequal width two-line coupler.

II.  ASYMMETRICAL COUPLED LINES IN HOMOGENEOUS
MEDIA

The construction of three-line couplers generally requires
knowledge of the electrical characteristics of asymmetrical cou-
pled lines. Cristal introduced the concept of unequal odd-mode
and even-mode admittances for each individual line of a set of
coupled lines of unequal widths in a homogeneous media [3]. The
electrical characteristics of the coupled-line directional coupler
are completely specified by either the capacitances per unit length
or the odd and even mode admittances. The relationship between
the coupler parameters, the coupling ratio and terminating admit-
tances, and the line parameters as developed by Cristal are
summarized in the following discussion.

Fig. 1 shows the coupler formed by line a and line b, both of
which have an electrical length of ninety degrees. The odd and
even mode admittances of each line are related to the per unit
length mutual capacitance C,;, and the self capacitances C, and
C,. These admittances are also related to the voltage coupling
coefficient k and the respective terminating admittances G, and
G,. The odd and even mode admittances can be expressed as

line a
G,— k/G,G
Y@ =vg, = (1)
1- k?
G, + k/G,G,
Y0 = 20C,, + oG, = 2 N ®
1-&*
line b
G, — kGG
Y =po, =2V 27 3)
1- k2
G, + kGG
Y® =20C,, + vC, = ——V¥ 270 (4)
1- k2

in which v is the velocity of propagation in the line media. Also
note that Y is the odd-mode admittance of line @ with respect
to line b and Y? is the odd-mode admittance of line » with
respect to line g. If the width of each line in Fig. 1 were made
equal, the coupler becomes symmetric with equal self capaci-
tances C and equal terminating admittances G,.

III.. THE THREE-LINE COUPLER IN HOMOGENEOUS MEDIA

The general three-line coupler is formed by lines 1, 2, and 3 as
shown in Fig. 2 together with the self and mutual capacitance
representation. Lines 1 and 3 are tied on both ends to form a
four-port coupler structure. For the same desired coupler perfor-
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